Monopole vector spherical harmonics
نویسندگان
چکیده
منابع مشابه
Spherical Harmonics
5 Spherical Harmonics 7 5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.2.1 Harmonic expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.2.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملResonance energy transfer: The unified theory via vector spherical harmonics.
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in...
متن کاملOptimal Spherical Harmonics Projection
We introduce the reader to the mathematics behind projection of n-dimensional vectors into a basis on n-dimensional space, where n can be anything upto and including infinity. We show how ideally one wants to project into the duals of a basis if this basis is not orthonormal, and provide the mathematics to formulate this operation in matrix form. The second part of the article discusses spheric...
متن کاملImportance Sampling Spherical Harmonics
In this paper we present the first practical method for importance sampling functions represented as spherical harmonics (SH). Given a spherical probability density function (PDF) represented as a vector of SH coefficients, our method warps an input point set to match the target PDF using hierarchical sample warping. Our approach is efficient and produces high quality sample distributions. As a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 1994
ISSN: 0556-2821
DOI: 10.1103/physrevd.49.1086